

IFRC Aerobic Faecal Waste Treatment Unit

The IFRC Aerobic Faecal Waste Treatment Unit is a rapidly deployable and scalable equipment package for treating human waste in natural and manmade disasters. The unit

safely treats wastewater and faecal sludge with efficient use of both energy and land and without strong odours. This fact sheet presents the details and specifications of an upgraded unit based on a system piloted by the IFRC in Cox's Bazaar, Bangladesh in 2018 and 2019. This treatment process is used globally, but this unit can be transported, set up and operated in emergency field conditions.

Treatment	Aerated active sludge treatment					
technology:						
Treatment	COD ¹ reduction and pathogen elimination					
objective						
Treatment	10 m ³ /day (estimated 20,000 people ²) per treatment line, scalable					
capacity						
Site requirements	Accessibility	on foot as equipment can be hand carried and assembled on site				
	Utilities	Equipment package comes with 12 kVA genset and wiring for				
		connection to renewable energy. Water needed for inception and				
		backwash.				
	Area	200 m ² per treatment line plus storage and office space (0.02 m2 per				
		person)				
	Discharge	Estimated 0.1 m3 dried sludge and 10 m3 treated wastewater per				
		day (wastewater can safely be used for irrigation or added to a				
		surface waterway)				
	Site	Fencing and security are needed for health and safety and theft				
	location	prevention. The unit does not produce strong odours or attract				
	and	insects but the unit should be as far from settlement as possible				
	security	while still allowing for efficient delivery of faecal waste.				

¹ Chemical Oxygen Demand

² Based on the an estimated sludge accumulation rate of 0.5 l/person/day from the Cox's Bazar, Kutupalong-Balukhali experience, results may vary by location

Life expectancy	Short, mid and long term treatment			
Weight and	11,790kg / 41.71m3 per treatment line. One 40 ft container			
volume				
Start up time	Construction: 2-5 days			
	Inception: 4 weeks or more depending on waste characteristics			
Capital cost	\$180,000 per treatment line (\$9.00 per person) ex works, plus local materials			
	(e.g.fencing, gravel), includes genset rather than renewable energy source			
Operational cost	\$5 per m3 treated, reduced with use of renewable energy. Excludes sludge			
	transport cost.			
Skills required	Set up and oversight: Aerobic treatment expertise			
	Daily operation and maintenance: Basic mechanical and electric skills & low skill			
	labour			
Treatment	The aerated active sludge treatment consists of grate for large solid waste removal,			
technology	anaerobic baffled reactor for pre-treatment, the aerated sludge reactor for COD			
	reduction, a settling tank for solid liquid separation, a glass bead filter for parasite			
	reduction and a disinfection step (UV or chlorination) for pathogen elimination.			
	Accumulated sludge is treated in an anaerobic digester or lime treatment.			
Process overview	The anaerobic baffled reactor is used as pretreatment, to remove solids from the			
	waste stream. The waste then moves to two reactor tanks in series. The aeration			
	of the incoming faecal sludge in the a reactor tanks leads to the breeding of			
	bacteria that metabolize the organic content (COD/TOC ³) together with the oxygen,			
	turning the organic content into a gas (carbon dioxide).			
	The supernatant from the two reactor tanks is transferred to a settling tank, where			
	the remaining solids are separated. The supernatant of the settling tank is then			
	passed through a glass bead filter, which is regularly backwashed, for the removal			
	of parasites and parasite eggs. Finally, the liquid is disinfected by chlorine or UV.			
	Sludge from the settling tank is added to the reactor tank. Reactor tank sludge is			
	treated by anaerobic digestion or lime treatment.			
Additional	A fully functional faecal sludge quality laboratory is a requirement for this unit.			
requirements				
Advantages over	Odour and solid reduction			
other faecal sludge	Low land use			
methodologies	Effective and efficient			

Frequently Asked Questions

What does it do? Treat a variety of faecal waste streams in emergency settings.

Does it smell? The pilot unit has produced no noxious odours or attracted insects.

Does it work? Yes, much better than expected. The pilot is small, too small for the tanks we chose. But we are seeing substantial COD reduction and parasite elimination. We believe that the planned larger unit will achieve the required COD and pathogen reduction.

Isn't all faecal sludge management context specific? Yes, but this technology is in use all over the world. Outside of extreme cold climates, the main challenge with deploying aerobic treatment is the sustainability issues (cost, spare parts, technical support) present in all low income settings. However, we are developing a short to medium term solution for acute emergencies. As with emergency water treatment, there are different considerations in the emergency context.

³ Total Organic Content

Process Flow

Black:	Solid, liquid or gaseous matter that is being transported or processed
Blue:	Locations of process or final destinations (reactor, environment)
Green:	Explanations and options

Indicative Equipment List and Total Cost

No.	Description	Qty	Notes			
1	L Coarse screen		For large solid removal			
	Anaerobic Baffled Reactor (ABR)		Further discussions needed to agree best			
2	tanks (T11s)	3	inlet/outlet flow positions			
			Added by BPL, in case further gravity is required to			
	T11 Plinth Kit	1	assist flow			
3	3 Sludge pump, 3"		Diaphragm pump			
4	Anaerobic Digester	1	Spec of Flexigester			
5	Aeration Tank	2	(02 T48 uprated steel)			
6	Plinth Kit	1	In case further gravity is required			
			Spec of Oloid 400 includes floats, fastenings and			
7	Surface agitator unit	2	packing			
8	Surface aerator unit	5	Spec of Hydro2			
9	12kVA Generator	2	For agitator and aerator plus back-up generator			
10	Effluent pump	1	Submersible sludge pump			
11	Sludge transfer pump	1	Single Screw pump			
12	Settling tank	1	T48 with tapered liner and uprated steel			
13	Glass beads vessel	2				
14	Glass beads 1,000kg	3	To fill vessel and approximately 1,000kg spare			
15	Backwash pump	1	Peripheral Pump			
16	Backwash tank (2m3)	1				
17	Reaction tank	1	T7 tank			
			Included a back-up generator to ensure continuous			
18	4 kVA Generator for pumps	2	power			
19	Control panel to retro-fit solar	2	To enable connection to solar power			
20	Pipe runs (suction hose)	20	3" Suction hose with storz ends			
21	Aquagranule 5kg Tubs	120	In case HTH is not available locally			
			Engineers tool kit + excavation tools - kit to be			
22	Tools (assortment)	1	agreed			
23	Consumables	1	Sundry items - kit to be agreed			
24	PPE (6 persons)	1	PPE as per previous DRK experience			
25	25 Packing		ISPM15 heat treated plywood casing throughout			
	Total Estimated Price \$180,000 ex works					

Learn more at www.emergencysanitationproject.org or email wash.geneva@ifrc.org